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Workshops so far

Yi: reviewed idea of “emulating a target trial with observational
data” (motivating examples: time-varying EPO strategies)

I brief intro to inverse probability weighting (IPW) and
parametric g-formula

Maya: Formal framework for causal effects of point treatments
as well as (deterministic) static time-varying strategies;
introduction to dynamic strategies

I TMLE estimator of these effects coupled with Superlearner
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Today

Deeper dive into:

Defining causal effects of time-varying treatment strategies on
an outcome mean (focus on risk of a failure event/survival case)

I Will cover general deterministic treatment strategies
I Can be classified as either static or dynamic – will review

examples

Assumptions needed for identifying these effects with
observational data from a longitudinal study

How choice of causal effect + assumptions + available data
leads us to estimators

I Inverse probability weighted estimators
I Parametric g-formula

And tradeoffs of methods – why ever use anything but TMLE
with superlearner?
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Motivating example

Over several decades, various questions were posed about

causal effects of following different time-varying antiretroviral
therapy (ART) initiation strategies

on long term all-cause mortality risk in ART-naive HIV-infected
populations. Strategies=interventions= rules.
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Effects of deterministic static interventions

We might consider the causal effect on 5-year all-cause mortality risk
in this study population of the interventions:

Initiate ART at baseline versus

Never initiate ART at any time within 5-years of baseline.

These strategies/rules/interventions can be classified as deterministic
static interventions:

treatment assignment at any time during follow-up is fully
determined at baseline.
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Effects of deterministic dynamic interventions

Alternatively, we might consider the causal effect on 5-year all-cause
mortality risk in this study population of the interventions:

If CD4 cell count first drops below 450 at time k then initiate
treatment at k ; otherwise do not initiate at time k versus

If CD4 cell count first drops below 350 at time k then initiate
treatment at k ; otherwise do not initiate at time k

These strategies/rules/interventions can be classified as deterministic
dynamic interventions:

treatment assignment at a given time depends on individual risk
factor history and is fully determined by that history.
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Effects of random dynamic interventions
Yet a third option... we might consider the causal effect on 5-year
all-cause mortality risk in this study population of the interventions:

If CD4 cell count first drops below 450 at time k then initiate
treatment at k with probability 2/3; otherwise initiate at time k
with probability 1/4

If CD4 cell count first drops below 350 at time k then initiate
treatment at k with probability 2/3; otherwise initiate at time k
with probability 1/4

These strategies/rules/interventions can be classified as random
dynamic interventions

treatment assignment at a given time depends on individual risk
factor history but is not fully determined by that history.

treatment is assigned at a given time by a weighted flip of a coin
depending on risk factor history
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Choosing a question?

So there are many possible ways to define the causal effect of
time-varying treatment rules

Because there are an infinite number of ways to define these
rules

How do we choose?

Will involve a tradeoff between the question we want to answer
and the data we have available to answer it.
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Ideal Data

To answer any of these questions, the ideal study would

1 Randomize individuals from the study population at baseline to
one of the two strategies (however defined, static, dynamic,
deterministic, random)

2 Force adherence to the rule required by the baseline
randomization throughout the follow-up (5-years or death,
whichever comes first)

3 Simply compare the difference in proportions of death from any
cause at the end of 5-years in each arm

I The number of deaths in arm 1 divided by number assigned to
arm 1 at baseline vs. number of deaths in arm 2 divided by
number assigned to arm 2 at baseline

Pretty easy. No fancy methods needed (e.g. two-sample t-test)
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Real world data

Rarely is such a study conducted

Even if a trial is conducted, cannot ethically force adherence to
any rule over time

Trials not always feasible or timely so best available data may
come from an observational cohort study (no baseline
randomization)

Whether a randomized or nonrandomized study, people may
drop out such that outcome status is missing
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HIV-CAUSAL Collaboration

Includes several cohort studies from five European countries and
the United States

Cohorts assembled prospectively and based on data collected for
clinical purposes within national health care systems with
universal access to care

These data have been used to estimate causal effects of many types
of ART initiation strategies

When to start treatment based on CD4 cell count? Cain et al.
(IPW) and Young et al. (parametric g-formula)
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Definition of the Study population/Baseline

In these analyses, HIV-infected study population was defined as those
who

are at least 18 years old

have never previously initiated antiretroviral therapy (ART)

no history of CD4 cell count less than 500 cells/mm3

not pregnant

have CD4 cell count and viral load (HIV RNA) measurements
within last 6 months

Define the first time at which an individual meets all of these criteria
and CD4 first drops into range 200-499 cells/mm3 as “time 0”
(baseline). Baseline may correspond to different calendar times for
different people (here considered individuals meeting eligibility criteria
between 1996 and 2009).
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Observed data (what we measured)
Monthly measurements of the following for each subject,
k = 0, . . . ,K = 59

Ak : indicator of ART initiation by month k

Lk : vector of mortality risk factors (e.g. most recent CD4
measurement, viral load, AIDS, whether a lab measurement
taken in month k)

Yk+1: mortality status by the next month

Ck+1: censoring by the next month (censored after 12
consecutive months with no lab measurement)

L0 also includes time-fixed baseline characteristics (e.g. sex, race).
YK+1 ≡ Y60 (outcome status by 60 months).

“history” of a variable denoted with overbars: e.g.
AK = (A0, . . . ,AK )

Assume temporal order (Ck ,Yk , Lk ,Ak) within each month k
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Deterministic effects

With these questions and HIV-CAUSAL in mind, will consider a
general framework for

1 Defining causal effects of time-varying deterministic strategies
(static or dynamic)

2 Assumptions for identifying these effects in observational studies
like HIV-CAUSAL

3 Function of observed data that identifies these effects under
these assumptions– the g-formula

4 IPW and parametric g-formula estimators

Will briefly consider extensions to random dynamic strategies – and
consider why we might choose them.
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Counterfactual outcomes
Denote g as any deterministic time-varying ART initiation strategy

Define Y g
60 as the indicator of whether an individual in the study

population would die of any cause by 60-months post-baseline
had, possibly contrary to fact, he adhered to the rule g

I We say this is that individual’s counterfactual outcome under
the rule g

I Y g
60 = 1 for an individual who would die of any cause within 60

months of his/her time 0 under g .
I Y g

60 = 0 for an individual who would be alive under g by this
time.

We are going to consider implicit in any definition of an intervention
g : “eliminate censoring” (so interpretation of counterfactual actually
depends on our definition of censoring)

“ ....and (somehow) force everyone to have a lab measure at
least every 12 months”.
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Counterfactual definition of causal effect

For any two different deterministic ART initiation rules g1 and g2

define

Individual causal effect: Y g1
60 − Y g2

60

Average causal effect: Pr[Y g1
60 = 1]− Pr[Y g2

60 = 1] (causal risk
difference)

E.g. g1 versus g2 could be “Initiate at baseline” versus “Never
initiate” or “Initiate when CD4 first drops below x , otherwise don’t”
for x = 450 versus 350.
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The Challenge

Patients (and doctors) really want to know individual causal
effects: clearly individual effects will require strong assumptions
for identification in any study (even a trial). So we won’t go
there...

The average causal effect is less of a reach – at least directly
identified in ideal trial

In observational studies (not the ideal trial) we need assumptions
that may (or may not) be reasonable.
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Identifying Assumptions

Under assumptions, it is possible to link this observed longitudinal
data to our counterfactual question (the average causal treatment
effect of g1 versus g2):

1 Exchangeability

2 Positivity

3 Consistency
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Exchangeability

For each k and both choices of g :

Y g
K+1, . . . ,Y

g
k+1

∐
(Ak ,Ck+1)|Lk ,Ak−1 = agk−1,Y k = C k = 0

In English:

At each follow-up time k , an individual’s observed treatment
status (and censoring) is independent of his/her future
counterfactual outcomes under the rule g conditional on his/her
observed past history of treatment and covariates, this history
being consistent with the intervention g and survival to k

This assumption is untestable because we don’t observe outcomes
under g for everyone. Holds by design in a sequentially randomized
trial where Ak assigned by weighted coin based on past values of
Lk ,Ak−1 (and no one is censored). In general, not guaranteed to hold.
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No unmeasured confounding

This conditional counterfactual independence assumption

Y g
K+1, . . . ,Y

g
k+1

∐
(Ak ,Ck+1)|Lk ,Ak−1 = agk−1,Y k = C k = 0

is equivalently called “No unmeasured confounding”

We say in this case that Lk is the “measured confounder history
through k” (e.g. measured CD4 history, viral load history, AIDS
status through k , clinic visit history)
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Causal diagrams to evaluate exchangeability

Exchangeability cannot be assessed in the data

It can be assessed under an assumption on how the data in the
study were generated driven by subject matter knowledge (or
simply by assumptions when knowledge is absent)

Causal directed acyclic graphs (DAGs) can be used to represent
these data generating assumptions

Under these assumptions, exchangeability (or failure of this
assumption) can be evaluated by certain manipulations of the
DAG
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Causal DAG representing sequential randomization

A0 L1

U

A1 YL0

This causal DAG is consistent with data generating assumptions of a
sequentially randomized trial where Ak is assigned by a weighted flip
of a coin dependent only on (Lk ,Ak−1) (and no censoring). Allows
that there is an unmeasured common cause of mortality and
measured confounders such as CD4 cell count (U could be genetic
factors). If data arose from such a trial, design guarantees no arrow
from U into A at any time.
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Causal DAG representing HIV-CAUSAL data

generating assumption

A0 L1

U

A1 YL0

As we did not physically assign treatment initiation in HIV-CAUSAL,
the absence of arrows from U into A at any time is an assumption.
Reasonable assumption if U is genetics and doctor also knew nothing
about genetics. If U is something doctor saw to determine treatment
that we don’t have in data set, need to draw an arrow.

J.G. Young (HMS/HPHCI) April 24, 2019 23 / 94



General evaluation of exchangeability

In general, exchangeability for any strategy g guaranteed on a causal
DAG where only arrows from (Lk ,Ak−1) go into Ak at each time k .

This is a special case, can define a more general approach to
reading exchangeability off of a causal DAG by the absence of
“unblocked backdoor paths” (Pearl)

Extra slides at end with details and example.
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Positivity Assumption

General definition of positivity assumption for any choice of strategy
g (static or dynamic):

If a particular level of the measured confounder history through
k is possible to observe in the study population (e.g. in
HIV-CAUSAL), then it must also be possible to observe
individuals with treatment status at k consistent with the
specified strategy g .

Examples...
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Example 1

Suppose:

1 We consider a deterministic static strategy“Never initiate ART”
(e.g. our choice of g2 in defining causal effect)

2 We assume (perhaps motivated by causal diagrams) that CD4
cell count history at k is needed to ensure exchangeability (it is a
needed component of Lk , the measured confounders)

3 Some individuals in HIV causal have CD4 measurements fall
below 350 during the follow-up.

4 By clinical guidelines, any individual who has a measurement of
CD4 fall below 350 initiates treatment (assume this guideline is
reflected in the HIV-CAUSAL data)

This results in a positivity violation: we observe levels of CD4 cell
count history in HIV-CAUSAL such that no one with that history has
data consistent withe specified treatment strategy g
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Example 2

Suppose everything else is the same but now, instead of considering
“Never initiate ART” we consider the deterministic dynamic strategy:

“Initiate ART in month k if CD4 first falls below 350; otherwise
do not initiate at k”

In this case, the fact that, in the real world, all individuals who have
a CD4 drop below 350 start treatment DOES NOT result in a
positivity violation – it does not result in no one with that level of the
confounder history (CD4 dropped below 350) having data consistent
with the strategy. This is because we changed the strategy (i.e. the
causal question).
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Solution to positivity violations

So a solution to positivity violations is to change the question to one
better supported by data – questions about effects of more
realistic/real-world strategies

i.e. dynamic strategies: real-world strategies are dynamic

Note: positivity is often mistakenly understood as the assumption
that “there are treated and untreated individuals at each time within
all levels of confounder history”. This is only the definition for “
always” versus ‘never” treat type questions.

Unlike exchangeability, positivity is (in principle) a testable
assumption (it is an assumption about the observed data only).

J.G. Young (HMS/HPHCI) April 24, 2019 28 / 94



Consistency Assumption

If any individual’s observed treatment history is consistent with the
intervention g then his observed outcome equals his counterfactual
outcome Y g

Consistency allows us to link the observed data to counterfactual
outcomes

Sounds like a definition but it’s an assumption.

Whether it holds or not depends on how we precisely define the
counterfactual outcomes.
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Violation of consistency
Consider simple case where we define g as “initiated treatment at
baseline”

Here Y g
60 is an individual’s mortality status had, possibly

contrary to fact, he initiated ART at baseline

What if the value of this outcome depends on treatment dose
and people received different doses in our study?

For any individual in our study with A0 = 1, is it guaranteed that
his Y = Y g?

No if by “initiate” we mean initiate some specific dose (e.g. 20
mg)

Yes if by “initiate” we mean “initiate according to how
treatment was initiated in this study”

In some cases counterfactuals will be hard to define precisely
(ill-defined); e.g. interventions on BMI...or death from competing
events? Makes violations of other assumptions more likely.
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The g-formula

Robins (1986,1987) showed that, given exchangeability, positivity and
consistency, we can identify the outcome mean under a deterministic
strategy g (static or dynamic) by the g-computation algorithm
formula characterized by that strategy

In recent years more simply called the g-formula

Like any population parameter (e.g. a population mean), the
g-formula characterized by g (and contrasts in this function under
different choices of g) can be estimated using some statistical
procedure in a sample from the target population.

In our example, this sample is those individuals who meet
criteria for population at baseline in HIV-CAUSAL.
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The (next) challenge

The g-formula characterized by some g is typically a high-dimensional
function

1 driven by the dimension of the number of follow-up times K + 1
and

2 dimension of the measured confounder history Lk , k = 0, . . . ,K
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The g-formula for risk of a failure event by K + 1

characterized by g

∑
lK

K∑
k=0

Pr[Yk+1 = 1|Lk = lk ,Ak = agk ,Y k = C k = 0]×

k∏
j=0

{Pr[Yj = 0|Lj−1 = l j−1,Aj−1 = agj−1,Y j−1 = C j−1 = 0]×

f (lj |l j−1, a
g
j−1,Y j = C j = 0)} (1)
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The g-formula for risk of a failure event by K + 1

characterized by g

Sum/integral over all possible levels of the measured confounder
history (e.g. CD4 cell count, viral load, clinic visit history)

The function that is summed is over is a function of
time-varying conditional hazards

Each term is conditioned on (i) a level of the confounder history
and (ii) the treatment history allowed under g (for that
confounder history in case of dynamic g)

The sum over all confounder histories is weighted by a function
of the joint distribution of the time-varying confounders

I specifically, a product over all times k of the chance of seeing
that level of the confounders at that time in the population
conditional on that level of confounder history and treatment
history consistent with g through previous time
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In other words...

It’s a messy function.

So even if we could reasonably argue our “causal assumptions”
(exchangeability, positivity, consistency) hold, additional
constraints are needed in practice to reduce the dimension of the
estimation problem (parametric models or machine learning)

Different estimators impose constraints on different features of
the data

Inverse probability weighting (IPW), parametric g-formula and TMLE
are three such estimators (and more!) and within each, there are
different implementations.

Choice of estimator and implementation usually involves a
bias/variance tradeoff.

I more reliance on data versus more reliance on model constraints
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Inverse probability weighting
IPW estimators are semiparametric estimators: they do not
require parametric specification of the whole observed data
likelihood

Any implementation of IPW requires consistent estimation of the
observed treatment mechanism

I Survival outcomes: density/probability function for treatment at
each time in the observed population conditional on past
measured treatment/confounders, surviving and remaining
uncensored

I Our example: chance of any level of treatment initiation status
by each k (Ak = 1 or Ak = 0) conditional on this past

I Denote: f obs(Ak |Lk ,Ak−1,Yk = Ck = 0)
I Special term: When we plug in Ak = 1, we call

f obs(Ak |Lk ,Ak−1,Yk = Ck = 0) the propensity score at k

Also requires consistent estimation of the censoring mechanism
in censored data
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Motivation for IPW

The reason that IPW estimators “work” (i.e. may be
consistent/converge to the true value of the g-formula) is that

The g-formula characterized by an intervention g has an
equivalent IPW representation
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IPW representation of the g-formula

g-formula characterized by g equivalently written as a function of
weighted discrete hazards

K∑
k=0

λg (k)
k−1∏
j=0

[1− λg (j)]

where weighted hazards at each time are defined as

λg (k) =
E [Yk+1(1− Yk)Wk(g)]

E [(1− Yk)Wk(g)]

with “E” meaning “expectation” (population average) and weights
Wk(g) specific to the choice of g and the time k . Weights also
depend on the person’s values of treatment, confounder and
censoring history....
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Weights Wk(g)
For each person in the population who has not yet failed by k , Wk(g)
is defined at time k and for particular strategy of interest g as a
ratio:

numerator: Takes the value 0 if the individual has a treatment
history inconsistent with g from baseline through any follow-up
time k or if that individual is censored in that period; otherwise
takes value 1

I E.g. if g is “initiate ART at k if CD4 first drops below 450;
otherwise do not initiate at k” then any individual in our
HIV-infected target population who, at time k , has never had a
CD4 value drop below 450 but starts treatment at k gets a 0 in
time k weight numerator.

denominator: Is a product over all times j = 0, . . . , k of
f obs(Aj |Lj ,Aj−1,Yj = Cj = 0)× Pr[Cj+1 = 0|Lj ,Aj−1,Yj = Cj =
0)
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A simple translation of W g
k

All of this complicated mess can be boiled down to the following:

For a person doing the “wrong thing” anywhere between
baseline and time k according to the treatment rule g :

I W g
k is zero

For a person doing the “right thing” at all times between
baseline and time k according to the treatment rule g :

I W g
k is 1 divided by that chance of “doing the right thing”

(having data consistent with g at k) among people in the
observed population with that person’s measured past.

J.G. Young (HMS/HPHCI) April 24, 2019 40 / 94



IPW estimators

This result (existence of IPW representation of g-formula) gives a
fairly simple approach to estimating contrasts in g-formulas
characterized by a g1 versus a g2 through five basic steps

1 Creation of person-time data set

2 Make copies for each strategy g considered

3 Artificial censoring as soon as data inconsistent with g

4 computation of inverse probability of censoring weights

5 computation of weighted hazards and cumulative risks

Start with reviewing basic implementation of this approach and then
some extensions/modifications/special cases
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Example

Suppose interest is in estimating effect of dynamic strategies

g1: If CD4 cell count first drops below 450 at time k then
initiate treatment at k ; otherwise do not initiate at time k versus

g2: If CD4 cell count first drops below 350 at time k then
initiate treatment at k ; otherwise do not initiate at time k
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Basic IPW: Step 1
Step 1: Construct a person-time data set

Columns: id , k (follow-up month), Ak , Lk (one column per
component – CD4, viral load, etc.), Ck+1, Yk+1

First line on which Ck+1 = 1 is last record in the data for that id
(and Yk+1 on that line coded as missing)

First line on which Yk+1 = 1 is last record in the data for that id

Any individual who is not censored by K + 1 and does not fail
has K + 1 records with Yk+1 and Ck+1 columns all 0

In addition to these columns, will generally have additional
columns with functions of “history” treatment and confounders

id takes values 1, . . . , n with n number meeting eligiblity for the
population at baseline

time-fixed baseline confounders are repeated on each line

This step does not depend on how we defined g1 or g2 (i.e. the
causal question)
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Illustration of subset of columns for one id

id k A CD4 AIDS C Y

1: 1 0 0 459 0 0 0

2: 1 1 0 552 0 0 0

3: 1 2 0 456 0 0 0

4: 1 3 1 430 0 0 0

5: 1 4 1 550 0 0 0

6: 1 5 1 552 0 0 0

7: 1 6 1 499 0 0 1
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Basic IPW: Step 2

Step 2: Make copies

Make 2 copies of this person-time data set

Copy 1 indexed by g1

Copy 2 indexed by g2
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Basic IPW: Step 3

Step 3: Artificial censoring

In each g -specific copy, create an indicator of artificial censoring

An individual will be artificially censored in the first interval his
data becomes inconsistent with g

In this copy, at time he is artificially censored, this is his last
record in the copy (even if had more records in original data)

So same id may have different number of records, in original
data, copy g1 and copy g2

E.g. for the g2 copy (initiate as soon as CD4 drops below 350;
otherwise don’t initiate), an individual who initiates at a time k
when CD4 has not first fallen below 350 is censored at that time.

Similarly, an individual who does not initiate at a k when CD4
has first fallen below 350 is censored at that time.
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Illustration of artificial censoring in copy for g2

id k A CD4 AIDS C Y

1: 1 0 0 459 0 0 0

2: 1 1 0 552 0 0 0

3: 1 2 0 456 0 0 0

4: 1 3 1 430 0 0 0

5: 1 4 1 550 0 0 0

6: 1 5 1 552 0 0 0

7: 1 6 1 499 0 0 1

Artificially censored at k = 3 because started before CD4 fell below
350

id k A CD4 AIDS C Y Cg350

1: 1 0 0 459 0 0 0 0

2: 1 1 0 552 0 0 0 0

3: 1 2 0 456 0 0 0 0

4: 1 3 1 430 0 0 0 1
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Same id in copy g1

id k A CD4 AIDS C Y Cg450

1: 1 0 0 459 0 0 0 0

2: 1 1 0 552 0 0 0 0

3: 1 2 0 456 0 0 0 0

4: 1 3 1 430 0 0 0 0

5: 1 4 1 550 0 0 0 0

6: 1 5 1 552 0 0 0 0

7: 1 6 1 499 0 0 1 0

Same individual is not artificially censored in the copy g1; he started
treatment when his CD4 first fell below 450 which is consistent with
g1
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Basic IPW: Step 4

Step 4: construct inverse probability of censoring weights.

This is most involved step
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Weight construction

In each copy, estimate the probability of NOT being artificially
censored at each time (doing the right thing) conditional on (i) past
treatment and confounder history and (ii) previous survival and
previously free of all censoring (artificial and “real”)

Don’t ever have to worry about (ii) by the data construction –
because people don’t have records past censoring/failure, all
estimates are inherently conditioned on (ii)

For (i) past treatment and confounder history means confounder
history through k and treatment through k − 1 (Lk ,Ak−1)
because, given this past, artificial censoring status is fully
determined by your current treatment status at k

I that is, we are estimating the probability that treatment Ak

takes the right value under g given past measured confounders
and previous adherence to g
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Weight construction

Because the measured confounder history Lk is high dimensional (e.g.
CD4 is a continuous variable) we need to make additional
assumptions to estimate this probability. One simple approach:

Pooled logistic regression

Dependent variable indicator of artificial censoring (e.g. Cg450)

Independent variables: function of k , current values of
confounders on each line k , and past values of confounders
through k − 1 (need to create more columns for this – e.g.
variable with cumavg of CD4 through each time, lagged values)
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Incorporating deterministic knowledge of this

probability

In our example, if you initiated by the previous time k − 1 and were
not artificially censored (you are still in the data) then you can’t be
artificially censored at a future time so I don’t need to include you in
the model (I know your probability of being uncensored at all future
times is 1).

Logistic regression can be restricted to person-time records with
Ak−1 = 0
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Sample R code

modelg450<-

glm(Cg450~k+k^2+k^3+CD4+CD4lag1+AIDS+cumavgrna +blage,

data=copy450restrict,

family=binomial(link = "logit"))

Assume data set “copy450restrict” is restricted to those with
treatment on previous line (lagged value of A) equal to 0. Pooled
over time model assumed cubic function of time, linear function of
cumavg of rna and baseline age, linear CD4 and lagged value of CD4.
These are restrictive assumptions:

Could alternatively use Superlearner (see Maya’s workshop) to
estimate these probabilities. E.g. can include different candidate
functional forms in the library.
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Artificial censoring weight construction for each

record in each copy

Next, estimate the probability of NOT being artificial censored in
each data copy at each time k for each id who is uncensored on line
k . In our example

For those with previous value of initiation indicator 1 (they
started by an earlier time, Ak−1 = 1), set this probability to 1
(by previous arguments)

For those with previous value of initiation indicator 0 (they didn’t
start by previous month, Ak−1 = 0), predict this probability from
the model using his observed covariate history (e.g. predict in R)

Call each of these estimated probabilities for each person-time p̂gi ,k
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Artificial censoring weight construction for each

record in each copy

For each record that is not artificially censored on line k , the
artificial censoring weight is defined as the cumulative product of
inverse probabilities 1/p̂gi ,0 × ...1/p̂

g
i ,k (on first line this is just

1/p̂gi ,0)

For each record that is artificially censored on line k , this weight
is set to zero.
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Actual censoring weights

When there is actual censoring in the original data, we additionally
construct weights for this type of censoring. Analogous process

Estimate probability of actual censoring at each time given
treatment and confounder history (all through k), previously
surviving and remaining uncensored

E.g. pooled over time logistic regression with dependent variable
actual censoring indicator

Independent variables function of treatment and confounder
history
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Actual censoring weight construction for each

record in each copy

Next, estimate the probability of NOT being actually censored in
each data copy at each time k for each id who is uncensored on line
k . In our example

Predict from model for these records (predict in R)

Call each estimated probability for each person-time record p̂ci ,k
The actual censoring weight for these records is defined as the
cumulative product of inverse probabilities 1/p̂ci ,0 × ...1/p̂ci ,k (on
first line is just 1/p̂ci ,0)

The actual censoring weight for records who are artificially censored
on line k is set to zero.
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Final weight for each id and time k in copy g

Take product of actual and artificial censoring weights for each id on
line k

1/p̂gi ,0 × ...1/p̂
g
i ,k × 1/p̂ci ,0 × ...1/p̂ci ,k
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Steps 1 to 4 recap

1 Construct person-time format data (not specific to the question)

2 Create two copies of original person-time data (one indexing
each hypothetical strategy)

3 Artificially censor each copy according to that copy specific rule
(there also may be actually censoring of people who are not
artificially censored)

4 Construct person-time weights for each copy and each
person-time record in each copy

I records that are either artificially or actually censored at k get a
weight of zero on line k

I those not, get a weight that is an inverse probability of
censoring weight based on estimates of censoring probabilities
(this will be another time-varying variable in each artificially
censored data set)
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Basic IPW: Step 5
In each copy, implement complement of weighted Kaplan-Meier as
function of weighted time-varying hazards

K∑
k=0

λ̂g (k)
k−1∏
j=0

[1− λ̂g (j)]

where each λ̂gk is just a fraction: denominator is sum of the weights
of all time k records in that artificially censored copy g and
numerator is sum of the weights in the subset of those whose failure
(death) indicator is 1.

Repeat in each copy and take difference/ratio for effect estimate

For 95% confidence intervals, repeat Steps 1 through 5 in many
(e.g. 1000) resamples with replacement of the original n ids, sort
effect estimates and take 2.5 and 97.5 percentiles as lower and
upper bounds.

J.G. Young (HMS/HPHCI) April 24, 2019 60 / 94



Stabilized weights

The IP of censoring weights in this basic implementation are simply
estimates of the weights W g

k that we defined earlier in defining the
IPW representation of the g-formula.

They can be highly variable, and estimator can perform poorly,
particularly if there are near positivity violations

I Certain individuals are observed to follow g in the data, but
they are rare (few people in the data with their treatment and
covariate history adhere to g).

In this case, the weights we described are 1 over a tiny value

Stabilized weights can help.
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Stabilized weights

Stabilized weights effectively multiply weights W g
k by a “constant”

function.

One convenient constant that doesn’t substantially change the
basic algorithm is the product from j = 0, . . . , k of the
probabilities of being uncensored at each time j given previous
survival and remaining uncensored (constant because it is a
feature of the population and not specific to individual’s
confounder and treatment values)

can estimate these probabilities by proportions in the sample
data

May not stabilize “enough” (can look at weight distribution, for
example, is it skewed?) – also how off is estimate from that
obtained using other methods (more on this later)

J.G. Young (HMS/HPHCI) April 24, 2019 62 / 94



Stabilized weights and marginal structural models

Can potentially further reduce extreme weights by changing
more features of the algorithm – but at the expense of more
constraints on the observed data distribution.

For example, a modification of the algorithm changes Step 5 so
that, instead of weighted Kaplan-Meier we impose a marginal
structural model (MSM) on the λgk functions conditional on
some subset of the baseline covariates L0 (call this V ), estimate
the coefficients of that model and then transform back to risk.

E.g. for V selected as race and sex we assume

logit{λg (k ,V )} = β0 + β1k + β2I (g = g1) + β3race + β4sex
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Stabilized weights and marginal structural models

Stack the two artificially censored data copies indexed by g1 and
g2 creating one long data set. Add a new column to this new
stacked data set g which takes value 0 if records come from
copy g2 and 1 if records come from copy g1.

Fit a weighted pooled over time logistic regression outcome
model with: dependent variable the event indicator Yk+1 and
independent variables a function of the copy indicator g , time
index k and V (could choose V = L0)

Weights are defined as in basic algorithm but with each term in
cumulative product multiplied by estimated censoring
probabilities conditional only on V (as opposed to the censoring
probabilities in the denominator which condition on time-varying
covariates Lk ,Ak−1).
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Stabilized weights and marginal structural models

This procedure targets the weighted hazard functions λgk but now
conditional (within levels of) V , functions of this subset are
constants (this is why we can multiply numerator by this function
even though V varies in the population). These weights tend to get
less variable as more components of L0 included in V .

Special case where we choose V empty, we are back to the
previous stabilization approach and don’t need to make an MSM
assumption (but weights likely more variable)
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Stabilized weights and marginal structural models
Can still get back population-level (marginal over V ) effect estimates
on risk scale by computing conditional risks from the hazards and
averaging out V :

From the estimated coefficients of this weighted outcome model,
predict for each of the n individuals at baseline the hazard at k
under g for their values of V – λ̂g (k ,Vi)
From these model based hazard estimates apply the same kaplan
meier computation to estimate the risk by K + 1 for each
individual (each Vi in the data) under each g and average these
individual g -specific risk estimates to get the population risk
estimate under each g .

1

n

n∑
i=1

K∑
k=0

λ̂g (k ,Vi)
k−1∏
j=0

[1− λ̂g (j ,Vi)]

For effect estimates take difference/ratio under each g . Can
bootstrap for CIs. .
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Marginal structural models

In any of the previously described implementations (with or
without stabilized weights), by considering only two choices of
g , a lot of people might be artificially censored.

So even if n is large, very few people may actually contribute to
the weighted estimator (a lot of zero weights).

Can impose even stronger MSM assumptions to use more data
at the expense of more potential for model misspecification bias
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Marginal structural models

Consider dynamic strategies of the form

If CD4 cell count first drops below x at time k then initiate
treatment at k ; otherwise do not initiate at time k

We initially considered only two choices of x (350 or 450). What if
we considered many choices (e.g. x = 450, . . . , 200 in increments of
50). Denote these g(x).
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Marginal structural models
Can use the copy and stacking approach we just considered but now

We make more than 2 copies (there is a copy for each level of x
considered)

Artificial censoring and weight creation for each g(x) as before

Weighted outcome regression to estimate hazards at each time k
under each g(x) (maybe conditional on V for better stabilized
weights) can be a function of k and x (and possibly V ).

The more levels of x (the more copies), the stronger
assumptions this model is making; e.g. if we just put in x then
weighted logistic outcome regression then we are assuming MSM
is linear in x

If assumption is right, we can increase precision for g(x) = 350
versus g(x) = 450 but if wrong increase bias

But this model answers more questions (if it is correct). Could report
risk curves as a function of x .
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Marginal structural models and static deterministic

strategies

When we restrict attention to static interventions g , a very natural
MSM arises. In our example, all such interventions are covered by:

Do not initiate ART

Initiate ART at time k , for any level of k

Every individual has data consistent with one of these interventions –
the one corresponding to their observed treatment pattern Ak .
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MSMs and static deterministic strategies

So everyone’s follow-up gets used in this case (no one is artificially
censored for all of these interventions, they will always be following at
least one). An MSM that smooths over all of these can be fit as
follows:

fit pooled logistic with dependent variable Yk+1 and independent
variables function of Ak (observed treatment history through k)
and k itself (also possibly subset of V for stabilized weights)

Remaining steps to get risks under each g can be implemented
as previously described

Potentially strong model assumption. And causal questions which are
contrasts in risks under static strategies don’t correspond to
real-world strategies which are dynamic (positivity/near positivity
violations more likely). See Hernán et al. (2000)
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Grace periods
Another way to improve precision/use more data (with or
without an MSM) is to allow a “grace period”

For example could consider strategies
“If CD4 cell count first drops below x at time k then initiate
treatment within m months of k ; otherwise do not initiate at
time k”. E.g. m = 6

Could choose two choices of x or impose marginal structural
models, etc. within this new question.

For any implementation, fewer individuals with be artificially
censored as m gets larger because it is a more flexible strategy.

Same broad approach as without grace period: no one is
artificially censored during grace period because intervention
says you can do what you want in that period – so probability of
being (artificially uncensored in this period) is 1 (incorporate
into weight construction as above).
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Dual Interpretation

These interventions with grace periods can be understood in two
ways:

During grace period, do not intervene

During grace period, define the treatment rule as “assign
treatment initiation according to a random draw from the
observed treatment density f obs(Ak |Lk ,Ak−1 = 0,Ck = Yk = 0)

Latter is an example of a random dynamic strategy. Second requires
stronger exchangeability assumption but may be more desirable for
generalizing results to future populations.
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IPW and random dynamic strategies in general
Artificial censoring approach does not work for IPW estimation
of effects of random dynamic strategies in general.
In general similar approach but weight denominator is estimate
of observed treatment density, weight numerator an intervention
density (the chance of receiving a level of treatment under the
hypothetical strategy)
Can show that weights constructed under artificial censoring
approach for deterministic interventions/grace periods are
estimating this intervention to observed data density ratio (when
weight denominator models are correct)
Because the chance of receiving any level of treatment in the
observed data is probabilistic not deterministic, the weights used
in IPW for random dynamic strategies can inherently be more
stable
E.g. can define the intervention density to be just a small shift
of the observed density (e.g. see Munoz-Diaz and van der Laan,
2012)

Robins (1986); Cain et al. (2010); Hernán et al. (2006, 2000); Young
et al. (2011, 2014); Li et al. (2017); Zhang et al. (2018)
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Assumptions for random dynamic strategies
We only reviewed exchangeability, positivity and consistency
(identifying) assumptions for deterministic strategies g

Can show that risk of event of interest by K + 1 (e.g. 5-year
mortality risk) under a hypothetical random dynamic strategies
is equal to a weighted average of risks under a subset of
deterministic treatment strategies

Subset includes any deterministic strategy that could be
observed if we implemented that random dynamic strategy

Formally, subset includes any strategy g under which positivity
would hold if the the observed treatment density were replaced
with the intervention density for that hypothetical strategy.

Therefore, the risk under a hypothetical random dynamic strategy is
identified in a study under which exchangeability, positivity and
consistency hold for all deterministic g in that subset (see for
example Young et al. (2014) in reference list).
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Parametric g-formula

Parametric g-formula is another approach that can be used to
estimate effects of time-varying treatment strategies:

Requires consistent estimation of full observed data likelihood

It provides a sparse data “solution” in face of near positivity
violations/few adherent to strategies over time but, again, at the
expense of potential model missspecification

On the whole, model assumptions are arguably even more
extreme than those imposed by the MSM

g-null paradox – under no causal treatment effect at any time
but t-v confounding affected by past treatment, some model
misspecification is guaranteed under standard parametric models
(except in unlikely cases)
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Parametric g-formula

Why do we use it?

Up until a few years ago, we did not know how to construct
semi-parametric estimators (e.g. IPW, TMLE) for certain types
of dynamic strategies on continuously measured time-varying
treatments

I Interventions that maintain a continuous treatment with a
range via interventions that depend on the natural value of
treatment–Richardson and Robins (2013)

Young et al. (2014) first showed how an IPW estimator could be
derived for these interventions

Currently still no extension for these particular interventions to
TMLE
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Parametric g-formula

Why do we use it?

Implementing two methods that rely on constraints on different
components of the observed data distribution can be
confirmatory of our conclusions

Drastically different results may suggest poor data support for
the question(near positivity violations, few individuals following
strategies) – this is informative in itself

TMLE is clearly becoming another option with many recent
developments in practical implementation (e.g. stremr package,
‘long-format TMLE”; Sofrygin, O., van der Laan, M. J., and
Neugebauer, R. (2016). stremr: Streamlined Estimation of Survival
for Static, Dynamic and Stochastic Treatment and Monitoring
Regimes. R package version 0.31.)
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Parametric g-formula

Another potential advantage of parametric g-formula? Allows
incorporation of a priori knowledge of distribution of
time-varying confounders (see Young et al., 2011). Even when
such knowledge is available may not be enough to outweigh the
areas of the data where no knowledge is available.

“Computational advantage”: algorithm changes little for
different strategies (unlike IPW which can be “very strategy
specific” in implementation)
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Parametric g-formula algorithm
Estimates the g-formula for risk by K + 1 under g by

1 Estimate each component of the g-formula using regression
models (under distributional assumptions)

I hazards at each time given past treatment and confounders
I joint distribution of the confounders at each time given past

treatment and confounders

2 Under confounders models and starting with each of the n values
of L0, simulate confounders at each time k and assign treatment
under g

3 Under the hazard model estimate the hazard at each k for each
of these n simulated “histories” under g

4 Using complement of Kaplan-Meier, estimate for each of these n
histories the risk by K + 1 under g

5 Population risk under g – average of these n history specific risks

Repeat for each g and take difference/ratio. Bootstrap for 95% CIs.
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Software and other materials

GFORMULA SAS macro with documentation and examples can
be accessed here:
https://github.com/CausalInference/GFORMULA-SAS

CIMPOD 2017 workshop materials with worked SAS example for
CD4-based dynamic strategies in HIV-CAUSAL (slides and code)
can be accessed here: https://drive.google.com/file/d/

0B_BEunAWYES5Si1VUENXSVNCSjg/view

Youtube video of 2017 workshop:
https://www.youtube.com/watch?v=evFBLp4MekI (sound in
beginning is bad but gets better)

R package...coming very soon (technical report with many
worked examples will be made available on arXiv.org)
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Types of paths on a Causal DAG

In understanding how to read exchangeability off of a causal DAG,
useful to understand different types of paths on a Causal DAG:

1 Causal path

2 Unblocked backdoor path

3 Paths containing common effects (colliders) of two variables
along the path

These three types of paths represent different underlying causal
structures that give rise to association between variables in your data.
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Causal Path

A0 Y

Path A0 → Y is called a “causal path”. E.g. allows that baseline
initiation causes survival status by 60 months. If this is a causal DAG
assume no common causes of treatment and outcome (would be true
in a trial with baseline randomization and perfect baseline adherence).
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Unblocked backdoor path

A0 Y

U

Path A0 ← U → Y “unblocked backdoor path”. Allows that baseline
initiation status and later mortality share a common cause.

Conditioning on a variable along an unblocked backdoor path,
blocks the path.

Here we would say “Conditional on U there are no unblocked
backdoor paths between A and Y ”
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Paths containing colliders

A0 L Y

U

L is a common effect of A0 and U . Say L is a “collider” on the path
A→ L← U → Y (L could be interim CD4 cell count). Paths
containing colliders are blocked.

This graph could again represent a trial with random assignment
of A
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Conditioning on a collider

A0 L Y

U

Conditioning on a collider on a path between A0 and Y opens that
path and associates A0 and Y (through U). Why?

Knowing patient has low interim CD4 count and in initiator
group, makes them more likely to have had the virus longer at
baseline (they started out sicker).

That is, knowing the effect, makes it more likely that, if you didn’t
have one cause, you had the other.
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Graphical evaluation of exchangeability
Exchangeability is specific to both the intervention g and time k . To
evaluate exchangeability Y g

∐
Ak |Lk ,Ak−1 = agk−1

for a given strategy g and time k on a DAG G , manipulate G as
follows:

1 Remove all arrows out of Ak

2 Remove all arrows into Ak+1, . . . ,AK

3 For j = k + 1, ...,K add back arrows from any component of Ls ,
s ≤ j into Aj if Aj is assigned based on that component of Ls
under strategy g

I English translation: if under the strategy g a measured covariate
value would be used to determine treatment assignment, add an
arrow from that covariate to treatment – e.g. under a dynamic
strategy where CD4 history (a component of Lk) is used to
determine whether treatment should be initiated.

Call this manipulated graph G g
k .
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Graphical evaluation of exchangeability

If the DAG G is a causal DAG then Y g
∐

Ak |Lk ,Ak−1 = agk−1 holds if

there are no unblocked backdoor paths between Ak and Y
conditional on Lk ,Ak−1 on G g

k .
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Example for K = 1

L1 A1

U1

YA0

U0

Evaluate Y g
∐

Ak |Lk ,Ak−1 = agk−1 for k = 0, 1, static g = (a0, a1)
and dynamic g = (a0, a

g
1 = l1). Modified from Robins and Hernan

chapter “Estimation of the causal effects of time-varying exposures”
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Construct G g
1 for static g

L1 A1

U1

YA0

U0
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Construct G g
1 for dynamic g

L1 A1

U1

YA0

U0

same
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Construct G g
0 for static g

A1 YL1

U1

A0

U0

J.G. Young (HMS/HPHCI) April 24, 2019 93 / 94



Construct G g
0 for dynamic g = (a0, a

g
1 = l1)

A1 YL1

U1

A0

U0
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