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Motivation: Global Burden of HIV

m High HIV prevalence in Sub-Saharan Africa
m Limited financial and human resources

Introduction

Prevalence of HIV among adults aged 15 to 49, 2017
By WHO region
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Retention in HIV Care in East Africa

Background
m Loss to HIV care is common in Sub-Saharan Africa
Introduction m Loss to care (retention failure) is associated with high

mortality
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Outline: Case studies of causal inference methods
to improve retention in HIV care in East Africa

Example 1: Effect of nurse-based triage on retention in
Introduction HIV care (Tran et al., 2016)
m The Causal Roadmap: Review of TMLE for point
treatment effects
m Extension to longitudinal interventions- LTMLE
® Implementation choices
m Data and simulation results
m Challenges and ongoing work
Example 2: Adaptive behavioral interventions to improve
retention in HIV care (Petersen et al., 2016)
m LTMLE to evaluate dynamic regimes (adaptive treatment
strategies)

m Effects of longitudinal dynamic regimes
m Estimating optimal dynamic regimes



Example 1. Low Risk Express Care (LREC)

m LREC: Task-shifting HIV care for clinically stable “low
risk” patients from clinicians to nurses
- USAID- AMPATH partnership; leDEA- East Africa
- Implemented in 15 clinics in Kenya 2007-2008
m Impact of enrollment into LREC on loss-to-follow
up/death?
- Clinical cohort data: Subset of eligible “low risk” patients
enrolled at varying (non-random) times following eligibility

Background
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The Causal Roadmap

Specify Causal Question
m As a parameter of counterfactual distributions
Specify Observed Data and Statistical Model
m Statistical Model: Set of possible observed data
distributions
Causal Roadmap Identify
m Translate causal parameter into parameter of observed
data distribution (estimand)
m Under explicit casual assumptions (expressed in language
of graphs or counterfactuals)
Estimate
m Estimand + Statistical Model= Statistical Estimation
Problem
m Multiple estimators: IPTW, parametric G-computation,
Double robust (including TMLE)
m Different estimators — different statistical properties

see, e.g. Petersen and van der Laan (2014)



Causal Question: Point Treatment Example

Time scale
m 90 day time scale; Baseline: First date eligible for LREC

Intervention (a.k.a. exposure or treatment): A

Causal Roadmap m A: Indicator of immediate enrollment in LREC program

Counterfactual outcomes: Y'(a)

m Y(1): Counterfactual retention status at 18 months under
immediate enrollment

m Y(0): Counterfactual retention status at 18 months under
deferred enrollment

B Target Causal Parameter: Ex. E[Y(1) — Y/(0)]:

m Difference in proportion lost to care if all enrolled
immediately vs. all deferred enrollment
m Focus here on E[Y(a)]



Specify Observed Data and Statistical Model

m Observed Data: n=15,225 i.i.d. copies of
O0; = (W;,Ai,Y:) ~ Po
m Baseline covariates W: age, sex, CD4 pre-ART,

urban/rural,...
Causal Roadmap m Treatment A: Indicator of immediate enrollment in LREC

m Outcome Y: Lost to care at 18 months (death=fail)
m Statistical Model M: Py € M
m Model should reflect real knowledge: large enough to

contain the true Py
m Probability distribution P of O can be factorized as:

P(O) = P(W)P(Y|A, W)P(AIW)

m Often: Model places restrictions, if any, only on P(A|W)
propensity score or treatment mechanism



|dentify

W: Baseline Covariates
(age, sex, CD4,...)

A: Immediate Y: Retention at 18
enrollment in LREC months

Causal Effect of Interest

Causal Roadmap

Randomization assumption Y'(a) 1L A|W
m Baseline covariates sufficient to control for confounding
- Holds if W blocks all backdoor paths A — Y
(eg, Pearl (1995))
Positivity: P(A = a|W) > 0 for a € {0,1}
- Ex. Violation if sickest patients never enroll immediately
Under these assumptions, can express casual parameter as a
statistical parameter (estimand)

E[Y(a)] =) E[Y|A=a, W = w]P(W = w)



Estimate

Three general classes of estimator:
Propensity score-based

CatesllRozdma - For example, Inverse Probability of Treatment Weighted
(see eg., Robins and Rotnitzky (1992); Hernan et al. (2006))

Outcome Regression-based

- For example, Parametric G-computation
(see eg, Robins (1986))

Double robust

- For example, Targeted Maximum Likelihood
(see eg, van der Laan and Rose (2011))
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Inverse Probability of Treatment Weighting

(IPTW)

m Estimate the treatment mechanism:P(A|W):

m Ex. probability of immediate enrollment given baseline
covariates

m Classically: Based on parametric regression model (eg
logistic regression)

capeliRoadnap - Susceptible to bias due to model mis-specification

m |IPTW Estimator

n
Piw =13 (A =a)Y;

ni= PAW)

m or stabilized counterpart
m P(A|W) is estimated propensity score
m Additional Limitations:
- High variance
- Unstable/biased in settings of strong confounding

11



Parametric G-computation

m Estimate the outcome regression: E(Y|A, W)

m Ex: Probability lost to care given enrollment and covariates
m Based on parametric regression model (eg. logistic
regression)

Causal Roadmap m Susceptible to bias due to model misspecification

m Marginal distribution of W estimated using the empirical
distribution

m Parametric G computation Estimator:

n 1~
Gcomp:fg E(Y|a, W))
n
i=1

m [i(Y|a, W) is estimated outcome regression

12



Targeted Maximum Likelihood Estimation-

Motivation & Overview

m Machine Learning (e.g. Super Learning) to generate an

initial (°) estimate of the outcome regression O(Y|A, W)
m Avoid bias due to mis-sepcified parametric models
m Could just ‘plug-in" resulting estimate:

Causal Roadmap 1 - ~0
=SR2, W)
i=1

m But... not good for inference (95% Cl, p values...)

m Instead: TMLE updates initial estimate of outcome
regression O(Y|A, W) to obtain targeted estimate
E*(Y|A, W)

m Targeting step uses estimate of propensity score IS(A| W)
to provide opportunity to

m reduce asymptotic bias if initial £0(Y|A, W) not consistent
m reduce finite sample bias

m reduce variance
13



A brief introduction to Super Learning

2007; Breiman, 1996)

m Competition of algorithms

m Parametric regression models
m Data-adaptive (ex. Random forest, Neural
nets)

Causal Roadmap

m Best team wins
m Convex combination of algorithms

m Performance judged on independent data: V-fold
cross validation (Internal data splits)

m Partition the data into “folds”

m Fit each algorithm on the training set

m Evaluate its performance on the validation
set

“Ensemble” Machine Learning approach (van der Laan et al.,

Training
Set

T Validation

y Set

14



Ex: 10-fold cross-validation

m Rotate through the folds

m Average performance estimates across the folds

m Choose the algorithm (or “team”) with the best
performance

Causal Roadmap

15



TMLE Algorithm for E[Y(a)]

Obtain initial estimate of the outcome regression:
EO(Y|A, W)

Target (update) the initial estimate (logit scale)

Causal Roadmap E*(Y|A’ W) = EO(Y‘A' W) té

m Maximum likelihood to fit e: Logistic regression of Y on
intercept, using £°(Y'|A, W) as offset and weights Ig((iTVT/))

m Update model constructed to ensure that fitting € solves
the efficient influence curve (EIC) estimating equation
(confers double robustness)

Plug in (“targeted") estimate of outcome regression:

A 1N A
TMLE = = E*(Yl|a, W,
p 2B (Y12, W)

16



Targeted Maximum Likelihood Estimation:

Properties

m Double Robust
- Consistent if either E(Y|A, W) or P(A|W) estimated
consistently
m Efficient
- Lowest (asymptotic) variance among reasonable estimators
if both E(Y|A, W) AND P(A|W) estimated consistently
at reasonable rates
m Can incorporate Machine Learning
- To estimate E(Y|A, W) AND P(A|W) while maintaining
valid statistical inference (meaningful p values and
confidence intervals)
- Not a guarantee- still need estimators of these quantities
to converge fast enough
m Substitution (aka "plug in”) Estimator
- Improved robustness to sparse data compared to
estimating equation alternatives

Causal Roadmap

17



Example code: Itmle R package
TMLE for point treatment: E[Y(0)]

Schwab et al. (2013); link to Itmle vignette

> data
W A

-1.2070657 0

Causal Roadmap 0.2774292 0
1
da

1.0844412
r <- ltmle(

v W N -
t =, O R =

a,Anodes = "A",Ynodes "Y",abar = 0)
> summary (r)
Estimator: tmle
ltmle (data = data,Anodes = "A",Ynodes = "Y",abar = 0)

Parameter Estimate: 0.50682

Estimated Std Err: 0.0075484

p-value: <2e-16
95% Conf Interval: (0.49203, 0.52162)

18


http://htmlpreview.github.io/?https://github.com/joshuaschwab/ltmle/blob/master/vignettes/ltmle-intro.html

Example code: Itmle R package
IPTW and G-comp for point treatment: E[Y(0)]

Schwab et al. (2013); link to Itmle vignette

> summary(r, estimator = "iptw")
Estimator: iptw
Causal Roadmap Call:
ltmle (data = data,Anodes = "A",Ynodes = "Y",abar = 0)

Parameter Estimate: 0.50285

Estimated Std Err: 0.0082819
p-value: <2e-16

95% Conf Interval: (0.48662, 0.51908)

> ltmle (data,Anodes = "A",Ynodes = "Y",abar = O,

gcomp = TRUE)
GCOMP Estimate: 0.5038029

10


http://htmlpreview.github.io/?https://github.com/joshuaschwab/ltmle/blob/master/vignettes/ltmle-intro.html

Example code: Itmle R package

TMLE for point treatment: E[Y(1) — Y(0)]

Schwab et al. (2013); link to Itmle vignette

> r <- ltmle(data, Anodes = "A",

Ynodes = "Y", abar = 1list(1, 0))
> summary (r)
Estimator: tmle

Causal Roadmap

Additive Treatment Effect:
Parameter Estimate: 0.19383
Estimated Std Err: 0.010055
p-value: <2e-16
95% Conf Interval: (0.17412, 0.21354)

Relative Risk:
Parameter Estimate: 1.3824
Est Std Err log(RR): 0.017493
p-value: <2e-16
95% Conf Interval: (1.3358, 1.4307)

20


http://htmlpreview.github.io/?https://github.com/joshuaschwab/ltmle/blob/master/vignettes/ltmle-intro.html

Beyond single time point static interventions...

Extending the roadmap to more complex causal questions
Intemontions Effects of multiple interventions

m longitudinal interventions
Effects of adaptive interventions

m dynamic regimes

21



Beyond single time point static interventions...

Extending the roadmap to more complex causal questions
Intemontions Effects of multiple interventions

m Longitudinal interventions
Effects of adaptive interventions

m dynamic regimes
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Effects of multiple interventions

m Motivating causal question: Effect of enrollment into
LREC on retention?

m Effect of a single time point treatment:

. Ex. E[Y(1) — Y(0)]: Difference in retention (loss to care)

interventions if all eligible did vs. did not enroll immediately in LREC

m Effect of a decision or action at a single time point

m But wait... Counterfactual Y(0): Retention status if did
not enroll immediately (first 90 days)

m Could have enrolled after 90 days...
m What if we want to know about the effect of enrolling
immediately versus never enrolling?
m Requires intervention at multiple time points: don’t enroll
in first 90 days or in second 90 days or...

23



Longitudinal Observed Data

Longitudinal data are also more complex
m Discrete time scale: 90 days (clinic visit interval)
- t=0,...,6 (18 months)
e m Covariates W;:

interventions

m Baseline: age, sex, CD4 pre-ART, urban/rural,...
m Time-varying: recent and nadir CD4, ART regimen,
adherence, TB, pregnancy, ...

Outcome Y;: Indicator lost to care (or died) by t

Exposure E;: Indicator enrolled in LREC program by t

Right censoring C;: Indicator transferred to clinic with
no LREC program (or database closure) by t

24



Notation: Longitudinal Observed Data

= “Non-intervention” nodes: L; = (Y;, W;)

-Lt:LQ,...,Lt
AL = “Intervention” nodes: A; = (E;, C;)
interventions -

—At:A(),...,At

m Censoring treated as an additional “intervention” node:
evaluate effect of enrollment in the absence of censoring

m We observe n = 15,225 i.i.d. copies of

O = (Lo, Ao, - - -, Ls, As, Lg) = (Ls, As) ~ Py

25



Statistical Model

m Probability distribution P of O can be factorized as:

Multiple
interventions 6 5

P(O) = HP(Lt\Zt_,At_)H P(At\[t,/_\t_)

t=0 t=0

m Statistical model places restrictions, if any, only on
treatment mechanism

26



Target Causal Parameter: Multiple interventions

m Intervention-Specific Mean: Probability lost to care by
18 months (t = 6) if
- Never enrolled in LREC and censoring prevented:
e E[Ye(é = 0,¢ = 0)] = E[Ye(0)]
- Enrolled immediately in LREC and censoring prevented:
E[(Ys(e =1,& = 0)] = E[Ys(1)]

m Average Treatment Effect: Difference in probability lost
to care by 18 months if enrolled immediately vs never
enrolled (and censoring prevented):

- E[Ys(1) — Y6(0)]

27



|dentification for longitudinal treatments

Causal graph (simplified for illustration)

Causal Effects of Interest
* Including effects mediated by interim health

Y,: Survival (t=2)

Multiple
interventions

W,;:Health (t=1)

W,:Health (t=0)

Ey:Enrollment (t=0) }——){ E,:Enroliment (t=1) ‘

28



The challenge of time-dependent confounding

Causal Effects of Interest
¢ Including effects mediated by interim health

Y,: Survival (t=2)

Multiple
interventions .
Time-dependent

confounder

Wy:Health (t=0) W;:Health (t=1)

‘EO:EnroIIment (t=0) }——){ E,:Enrollment (t=1) ‘

m Covariates needed to block back-door paths are affected
by earlier exposure (see, e.g. Robins (1989))

20



|dentification Assumptions (1)

Causal Effects of Interest
* Including effects mediated by interim health
Time-dependent

W,:Health (t=0) (1‘1] confounder
Multiple
interventions

Ey:Enroliment (t=0) E,:Enroliment (t=1)

m Sequential randomization (Robins, 1989)

Y,: Survival (t=2)

Y6(§) 1 At|zt,/it,1 t= O,...75

- Apply back door criteria to each intervention node in
sequence (Pearl and Robins, 1995)

20



Multiple
interventions

|dentification assumptions (2)

m Positivity
P(A: = a|As—1 = 3;-1,L;) > 0,t =0,...,5

for all regimes of interest
m Ex: Needs to hold for 3e€ {(¢=1,=0),(¢=0,c=0)}
m Example: Positivity violation
- Patients who lose eligibility have zero probability of

enrolling
- Regimes such as “enroll two time points after eligibility”

would not be supported

21



Longitudinal G computation formula

m Under sequential randomization and positivity, the
intervention-specific mean outcome is identified as (Robins,
1986):

5
E(Y6(3)) = > (E(VelAs = a5, Ls = B) [ P(klAcs = . Les = Tia))
Multiple —0
interventions

Is
m Analog to point treatment, uses expectation of outcome conditional
on exposure and confounding covariate history
m Ex. Probability of loss to care by 18 months given

uncensored, never enrolled, and full covariate history
m Because some of these covariate values affected by earlier exposure,
now need to “standardize” to a different distribution of covariates

m The "post-intervention” covariate distribution
m Ex. the values the time-varying covariates would have had
if never censored and never enrolled

k¥l



Parametric G-computation

m Estimate the components of the longitudinal
G-computation formula directly
- Non-intervention factors of the likelihood: Conditional
distributions (densities) of non-intervention covariates
given the past

Multiple
interventions

6 5
P(O) =[] P(LelLe. Ac) ] P(AIL:, Ac-)
t=0

t=0

m Classically, based on parametric regression models
- Susceptible to bias due to model mis-specification

(Robins, 1986)

23



Inverse Probability of Treatment Weighting

(IPTW)

m Estimate the treatment mechanism
- Treatment mechanism: Conditional probability of exposure
and censoring given the past

6 5

P(O) :HP(Lt|Zt77/Z\t7)HP(At‘zta/z\tf)

Multiple t=0 t=0

interventions

m Ex. For each time point (t =0, ...5), estimate
m Probability enroll in LREC given not already enrolled,
uncensored, and past covariates
m Probability remain uncensored given enrollment history,
previously uncensored, and past covariates

m Based on parametric regression models

- Susceptible to bias due to model mis-specification
m Data-adaptive/Super Learning methods

- Challenges for inference

(Robins and Rotnitzky, 1992; Hernan et al., 2006)

24



Alternative representation of the longitudinal
G-computation formula

m Can rewrite longitudinal G-comp formula using iterated
conditional expectations (ICE) (Robins, 2000; Bang and
Robins, 2005):

Multiple

interventions E [ |:]E [E [Yﬁ’ZS,IZ\S — 55} ‘Z4’ /Z\4 = 54}} ]

m Basis for alternative parametric G-computation and double
robust estimators

m Advantage: Lower dimensional set of “non-intervention
factors”

m Series of conditional expectations vs. conditional densities
m Easier to estimate well

25



ICE G-computation Estimator

Parametric regression models to estimate series of conditional
expectations (nested outcome regressions) (Robins, 2000; Bang
and Robins, 2005)

Estimate inner most conditional expectation (t = 6)
Multiple

interventions - Regress outcome Y on past (As, Ls) B
- Generate predicted values by evaluating at As = 35

Estimate next conditional expectation (t = 5)

- Use predicted values from prior step as new “outcome”
- Regress on past (A4, Lg) B
- Generate predicted values by evaluating at Ay = 3,

Repeat for t =4, ...,1

A Take empirical mean

26



Longitudinal TMLE

Properties

m Double robust: Consistent if either ICEs or treatment
mechanism: H?:o P(A¢|L:, At_1) estimated consistently
Multiple m Efficient in semiparametric statistical model if both
estimated consistently (at reasonable rates)

m Can incorporate Machine Learning: But care needed-
more coming up...

m Substitution estimator: i.e. ‘plug-in” estimator; may
perform better in sparse data settings

Robins (2000); Bang and Robins (2005); Robins et al. (2007); van der
Laan and Gruber (2012)

7



TMLE Algorithm for E[Y(3)]

Analog to the ICE G-comp estimator, with two differences

Can generate initial estimate of each conditional
Muiple expectation (i.e. iterated outcome regression) using
e machine learning
Before fitting the next conditional expectation, update the
initial fit
m Approach analogous to single time point TMLE

m Update uses an inverse propensity score-based weight
m Confers double robustness properties

28



L-TMLE Algorithm: Example

For inner-most conditional expectation (t = 6):
E [Ys|Ls, As = as|
Generate initial estimate
- Using Super Learning
Update initial estimate (as for single point)
Muliplel 13 - Use MLE to fit an intercept only logistic regression
- Initial fit as offset . o
- Using weights 1(As = 35)/ [T>_o P(Aj|L;, Aj-1)
- Treatment mechanism can be estimated using Super
Learning
Repeat for next conditional expectation (t = 5)...
Generate initial fit using predicted value from prior step as
“outcome” _ o
Update, using weight (A, = &)/ [Ti—o P(Aj|L;, Aj—1)
Repeat for t =4, ...,1
A Take empirical mean

20



ltmle R package: Effects of multiple interventions

Syntax
m “Anodes’: treatment or exposure nodes
m LREC Example: Enrollment in LREC: E;, t =0,...,5

Mttige m “Cnodes”: Indicator of right censoring
m LREC Example: Transfer to new clinic by time t: C;,
t=0,..5

m “Lnodes”: Time varying covariates
m LREC Example: CD4 count, etc. at time t: W,
t=1,...,5
m “Ynodes": Outcome or outcomes
m LREC Example: Indicator lost to care by t: Y;, t=1,...,6

40



Example R code: Estimation of E[Y(0)] in Itmle
package

head (data)

W A1l L A2 Y
1 -1.3435214 0 -1.4164248 0 O
Mt 2 0.6217756 1 1.0621048 1 1
interventions 3 0.8008747 1 0.2808690 1 0
4 -1.3888924 0 -0.8677043 0 O
5 -0.7143569 1 -0.9064954 10
6 -0.3240611 1 0.7103158 00
> ltmle (data, Anodes = c("A1", "A2"), Lnodes = "L",
Ynodes = "Y", abar = c(0, 0))

TMLE Estimate: 0.5128132

41



Example R code: Estimation E[Y(3)] for 3 = (1,0)
in [tmle package, with censoring

> head(data)

W Al C L A2 Y

1 1.3514112 1 censored NA NA NA

2 0.1854795 1 censored NA NA NA

Multiple 3 0.4315265 0 uncensored 0.1251185 0 O

ntenventions 4 -0.1906075 1 censored NA NA NA
5 -0.9715509 1 uncensored 0.3115363 1

6 0.7680671 1 uncensored 0.6744166 0 1

#set all A1 to 1, set all A2 to O,

#set C to uncensored, use glm

> 1ltmle(data, Anodes = c("A1", "A2"), Cnodes = "C",
Lnodes = "L", Ynodes = "Y", abar = c(1, 0))

TMLE Estimate: 0.4704012

link to Itmle vignette

490


http://htmlpreview.github.io/?https://github.com/joshuaschwab/ltmle/blob/master/vignettes/ltmle-intro.html

Example R code: Estimation E[Y(3)] for 3 = (1,0)
in Itmle package, using SuperlLearner

#set all A1l to 1, set all A2 to O,

Multiol #set C to uncensored, use default SuperLearner library
ultiple

interventions > ltmle(data, Anodes=c("A1", "A2"), Cnodes = "C",
Lnodes="L", Ynodes="Y", abar = c(1, 0),
SL.library = "default")

TMLE Estimate: 0.4692075

link to Itmle vignette

43
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Example R code: Additive Treatment Effect and

Relative Risk

> result <-
Lnodes="L",
> summary (result)
Treatment Estimate:
Parameter Estimate:
Estimated Std Err:
p-value:
95% Conf Interval:
Control Estimate:
Parameter Estimate:
Estimated Std Err:
p-value:

95% Conf Interval:

ltmle (data,
Ynodes="Y",

~

Anodes=c("A1", "A2"),

abar=1list(c(1, 0),

Cnodes = "C",

c(t, 1))

.42744

.086301
.3109e-07
.2583, 0.59659)

o~oo

0.29593

0.046223
1.5315e-10
0.20533, 0.38653)

Additive Treatment Effect:

Parameter Estimate:
Estimated Std Err:
p-value:
95% Conf Interval:
Relative Risk:
Parameter Estimate:
Est Std Err log(RR):
p-value:

95% Conf Interval:

(-0.06024,

(0.87614,

0.13151

0.097835

0.17887

0.32327)

1.4444

0.25507

0.14943

2.3812)

link to Itmle vignette
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http://htmlpreview.github.io/?https://github.com/joshuaschwab/ltmle/blob/master/vignettes/ltmle-intro.html

Challenge: Estimation of treatment mechanism and

outcome regressions

Need that initial fits of the outcome regressions not be too
overfit

m Internal sample splitting approaches relax this (Zheng and
van der Laan, 2011)
Multiple

it m Not implemented in Itmle package (yet!)

m Be careful of default in package

- Default: logistic regression (glm) with all past variables as
main terms
- If using a parametric model for treatment mechanism and
outcome regressions, specify carefully and consider a priori
reduction in adjustment variables
m Ex. Background knowledge (eg most recent values of
time- varying covariates)
m Ex. Marginal association with the outcome

A5



Challenge: Estimation of treatment mechanism and

outcome regressions

m DR estimators make it possible to use machine-learning
approaches to estimate treatment mechanism and
outcome regressions

- Doesn't guarantee they will work well enough
m If using Super Learning (or other machine learning) to

e estimate treatment mechanism and outcome regressions,

need estimates to converge to truth fast enough
- If can estimate treatment mechanism with a correctly

specified parametric model (e.g. an RCT), then just need

estimators of outcome regressions to be consistent
- Remains a challenge in high dimensional data

m Some progress on this front: Highly Adaptive LASSO
(van der Laan, 2017)

m Choose your machine learning library carefully
- see eg, Schomaker et al. (2018); Tran et al. (2010, 2016)

46



Challenge: “Practical” positivity violations

m Poor support for regime (treatment history) of interest
- Ex: H?:o P(A; = §t|/_\t_1 =31, Zt) is small
- Problem increases with increasing number of time points

- Ex: Small probability of not enrolling given healthy at each

Maltile time point — product can get very small

interventions

m Can lead to both bias and underestimates of variance
(see eg Petersen et al. (2012, 2014); Tran et al. (2010))
Some (partial) responses (defaults in Itmle package)
Use a substitution estimator (G-computation, TMLE)
- But a challenge for all estimators
Use robust variance estimator (Tran et al., 2018)

- "blows up" when confidence intervals become unreliable

Bound estimated propensity score away from 0

A7



Simulations: In care survival if never enroll

m Correctly specified parametric models to estimate iterated
outcome regressions and treatment mechanism
- Positivity violations increase with increasing time points

m Choice of estimator can make a difference

= GCOMP| |4 IPTW « AIPTW o TMLE (cov) [+ TMLE (wi)
0.050 .
Simulations &
Data Analysis 0.045
0.040 1
0.035 - .
0.030 A L
w
2 0025 1 L
0.020 A + T
L]
0.015 A 4
0.010 1 .
*
0.005 A 3
L]
0.000 . 1 1 + T
1 2 3 4 5 6

Time
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Real Data: Effect of Low risk Express Care

m TMLE+Super Learning to estimate propensity scores and
outcome regressions
m Results: LREC enrollment appears to improves retention
outcomes
m Results consistent with better control of confounding by
TMLE if patients who become sick less likely to enroll

Simulations &

Data Analysis
- NPMLE

TMLE
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Beyond multiple time point static interventions...

Extending the roadmap to more complex causal questions
Effects of multiple interventions

m longitudinal interventions

Aantive Effects of adaptive interventions

retention

A m Longitudinal dynamic regimes

50



anIsuadxa
10 3JN21YIp 003 sem uonepodsuel |
“dn Buppid yum patapaiul
Asuow 1oy paau 10 JIOM

9Jed p3’u L upip | pue |@m ey |
suonesi|qo Ajiwey pey |

NH pey | 3eyy Ay

Wwod ay3 03

21n50[2sIp PaysH d1ul|d SuipusaNY
AIH pey | 1ey1 Ajjwey o1

21n50[2SIp PaysH d1uljd BuipusNY
21ulpp Suipuane

pea1sul Jajeay [euonipely
e Sujaas we/mes | asnesag

Jan3.104 SBNIp 23e3 03 JUBM LUPIP |

juawyuiode Juissiw Joy
W P|03S PINOM DIUID Plee Sem |
218 s5990€
03 Asuow ySnoua aney Jupip |
19m9q
19394 3w puid|ay J0u sem audIPaN
BUIdIPaW Y3 W0l
5199449 apIs Suioualiadxa sem |
"0} aW p|o1 uosiad Jueriodwi
13y10 Jo Jaquidw Ajiwey

21U12 03 BWOD 03 15 003 3} |
21U1] 38 W} Yonw 003 Juads |
|oyod(e SupjuLip sem |

POOJ ySnoua aney 1,upip |

Geng et al, CID, 2016

35%
30%
25%
20%
15%
10%
5%
%

m Psycho-social (eg. patient-clinic interactions)

m Medical (e.g. too sick to travel to clinic)

HIV+ persons face diverse barriers to retention
m Structural (eg. transport too expensive)
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Dynamic regimes to optimize retention in HIV care

Motivation:

m Several behavioral interventions with proven efficacy
(compared to standard-of-care):

- SMS text messages: reminders and support

- Travel Vouchers: small conditional cash incentives for
on-time visits

Ex. 2 - Peer Navigators: relationship-based support for overcoming

Adaptive .
e barriers to care

interventions

m Hypothesis: Any one-size-fits-all approach will be
- Inefficient - many patients will do well with no
intervention
- Sub-optimally effective - failing to help some in need by
assigning them an intervention less likely to work for them
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Precision Medicine/Public Health: The challenge

m Objective: Improve effectiveness and efficiency by
targeting interventions based on individual characteristics

m Dynamic regime: A rule for assigning and modifying an
intervention based on evolving individual characteristics
m Ex. Target causal parameters:
- Expected outcome under a specific longitudinal regime

m Mean outcome if all subjects had followed a given rule?
- Optimal dynamic regime

Dynamic

Regimes m What rule would result in best mean outcome if all
subjects followed it?

- Expected outcome under optimal regime

m Mean outcome if all subjects followed optimal rule
(compared to some alternative)?
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ADAPT-R Trial: Adaptive strategies to improve

retention in HIV Care

m Sequential Multiple Assignment Randomized Trial
(NCT02338739; Pls: Geng, Petersen)

m 1800 HIV patients initiating ART in Kenya

m Objective: Develop and evaluate adaptive treatment

strategies (aka "dynamic regimes”) to optimize retention
in HIV care

First stage Second stage
Study ‘ . ST Assess > < ‘ Measure
Y ‘prevention treatment
Population ! ‘ response ) " outcomes
intervention intervention

4 Outreach

iNot Retained| R ) {SMS +Voucher

Dynamic Routine education and counseling

(REC)

4" Navigator

Regimes

% Retained REC

,“ Outreach
+Not Retained (R )<~

v || sMSs Text Messages = -
‘\R/ L Megetor | Conti

< Outreach

INot Retained -J‘l;( { SMs +Voucher
[ Voucher - S
o K

— Discontinue Voucher

Study
enroliment

(=
Visit adherence

HIV RNA level

Discontinue SMS

Time to lapse in engagement
Time to re-engagement

Retained
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ADAPT-R Trial: Data and Model

m Data
- Baseline covariates Lj:

- V: Wealth

- So: Patient satisfaction with care

- 1%t-line intervention Ay: SMS, Voucher, Education
- Time-varying covariates L;:
- Y1: “Retention failure,” 14 days late for visit
- Si: Updated satisfaction with care
- 2"_line Intervention A;:
D e - If fail (Y2 =1): SMS+Voucher, Navigator, Outreach
- If don't fail (Y1 = 0): continue or stop 1%-line
- Outcome Y;: Viral failure at year 2
m Statistical model makes assumptions only on g

m Randomization: go(Ao|Lo) and go(A1|Lo, Ao, L1) known
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Target Parameter: Regime-specific mean outcome

m Decision rule: d;(/;) assigns an “intervention” value a;
based on observed past at time t
m Dynamic regime: set of rules, one for each time point
d= (do, dl) €D
- ADAPT-R: Simple example of a rule d:
m SMS at ART start

do . Ao :SMS

m If 14 days late, escalate to Peer Navigator (Nav),

Dynamic

Regimes otherwise stop SMS

di: If Y1 =1 then A; = Nav, else A; = stop

m Regime-Specific Mean E(Y>(d)): Counterfactual
probability of viral failure if followed rule d
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Identification and Estimation

m ldentification assumptions: Analogous to longitudinal
“static” regime

Sequential randomization
Positivity
- Both hold by design in sequentially randomized trials
m Estimators:Analogous to longitudinal “static” regime

G-computation (including ICE version)
IPTW

Dynamic

Regimes LTMLE

- Simply evaluate for treatment and covariate history that
correspond to regime of interest

s A= d(D)
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Example R code: Estimate of E[Y(d)] for a simple
data structure and regime d in ltmle package

Data: W,AL1,L,A2,Y
Dynamic regime d of interest is:

- Always treat at time 1 (Al = 1)

- Treat at at time 2 (A2 =1)ifL >0

> abar <- matrix(mrow=n, ncol=2)
> abar[, 1] <- 1
> abar[, 2] <- L > 0
Dymamic > ltmle(data, Anodes=c("A1", "A2"),

Regimes

Lnodes="L", Ynodes="Y", abar=abar)
TMLE Estimate: 0.3061747

link to Itmle vignette

1943


http://htmlpreview.github.io/?https://github.com/joshuaschwab/ltmle/blob/master/vignettes/ltmle-intro.html

Optimal rule for assigning retention interventions?

m Optimal Regime: d°P* € D that minimizes E(Y2(d))
- E(Y2(d)): Probability fail at year 2 under rule d
m Option 1: Estimate E(Y>(d)) for each d
(e.g. Zhao and Laber (2014) )
m Requires each rule d € D be supported
m Option 2: Dynamic Marginal Structural Working Model
(Robins, 1999; Van der Laan and Petersen, 2007)
m Lower dimensional summary of how E(Y>(d)) varies as a

Optimal

Dynamic function of d

Regimes

m Possibly conditional on a subset of baseline covariates V
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Example: Marginal Structural Working Model

m Consider limited set D based on satisfaction threshold 6
- df(So): If So > 0 then Voucher, else SMS
- dle(Sl)
- If Y1 =0 then stop 1-line
- If Y1 =1 and 51 > 0 then Voucher+SMS, else Navigator

- E(Y2(0)): Expected outcome under rule d’
m Optimal threshold 67
- Does optimal threshold differ depending on wealth V?

m Pose following working model mg (6, V) for Eg(Y2(0)|V):
mg(0, V) = expit(Bo + 516 + 20° + B3V + B40V)

Optimal
Dynamic
Regimes

- Working model-specific optimal regime given V:

* — : _ 61 _ﬁ
0 (V):argmglnmg(ﬁ, V)—% 252\/

60



ADAPT-R: Marginal Structural Working Model

— Truth
“= mg(0,V)
e  Minimum

0.50 0.55

Ey(Y2(0)[V)

0.40 0.45

0.30 0.35

Optimal
Dynamic 0
Regimes

m Misspecified Model — Working model-specific optimal
0*(V) may differ from true optimal §°Pt
- Data adaptive estimation of the MSM (Petersen et al., 2016)
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Ex. Estimators of Longitudinal Dynamic Marginal
Structural Model Parameters

Analogous classes of estimator:

IPTW (Robins, 1999; Van der Laan and Petersen, 2007)
DRICE (Robins, 2000; Bang and Robins, 2005):

m Double robust and semiparametric efficient

m Uses sequential regression methodology

m Defined as solution to estimating equation

LTMLE (Petersen et al., 2014)

m Double robust and semiparametric efficient
m Substitution estimator

Optimal
Dynamic
Regimes

m Implementation more complex

® Implemented in 1tmle R package
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Outcome under estimated optimal regime

m Estimate of 8 in MSM gives estimate of
m Optimal threshold

0*(V) = arg main mg(0, V)
Br  Pa

28, 2B
=ag+o1V

m Inference on expected outcome under optimal threshold
Optimal E(Y(0*(V))) (Zhang et al., 2013)

Dynamic

Regimes

m Simply construct confidence interval for E(Y()), plugging
in estimated optimal rule 8%(V), and ignoring that it was
estimated
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Simulation: Covariate adjustment with TMLE

reduces variance

m All estimators unbiased with good 95% CI coverage
(Petersen et al., 2016)

1
0.95 ——
S 09 —
3 i | | | | | |
E 0.85
2 08 —— — ——1 —
g
5075 1 — —1 —
&
S 07 _— “IPTW: g0
9 .
%0.65 il WIPTW: gn
g TMLE
S 06
0.55 -
Simulations 05 ‘ ‘
Expected a0 al Expected
outcome under Working model specific outcome under
example optimal threshold: optimal
threshold: 6*(V)=a0+alv threshold:
E(Y(6=4)) E(Y(6*(V))
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Summary: Longitudinal Dynamic Regimes

m Double Robust ICE Estimators incl. TMLE

m Available for regime specific mean, MSM parameters,
optimal regime, and expected outcome under optimal
regime

m Observational data: Reduce bias and variance

m Sequentially randomized trials: Reduce variance

m Practical positivity violations
m Ubiquitous in longitudinal data
m Despite partial solutions: still a major concern
m Optimal dynamic regime (within a restricted class)

- Directly or using marginal structural working model
Conclusion - Inference on both the optimal rule and expected outcome
under optimal rule
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1tmle R package

Causal effect estimation with multiple intervention nodes
m Intervention-specific mean under longitudinal static and
dynamic interventions
m Static and dynamic marginal structural working models
m Controlled Direct Effects

m General longitudinal data structures

m Repeated measures outcomes (including survival)
m Right censoring
m Hierarchical data

Estimators

m IPTW
m |CE G-comp (no inference)
Conclusion m TMLE

m Options include nuisance parameter estimation via glm
regression formulas or calling SuperLearner ()
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